
On-Device ML
Needs, Challenges, Deployment, Low-Level Concepts

Shubham Panchal FOSS Meetup Pune - January 2026



What is On-Device Machine Learning?

"Techniques that 
enable ML models to 
execute locally on 
the user's device i.e. 
without requiring 
communication to a 
hosted service 
across the Internet"

https://engineering.fb.com/2025/07/28/android/executorch-on-device-ml-meta-family-of-apps/
https://bytes.swiggy.com/enhancing-brand-visibility-and-trust-with-on-device-ml-models-a-journey-at-swiggy-e3e626f96c52
https://developer.apple.com/apple-intelligence/
https://machinelearning.apple.com/research/hey-siri
https://www.linkedin.com/posts/shreydesai_introducing-message-translations-activity-7376322823184863234-pmgY?utm_source=share&utm_medium=member_desktop&rcm=ACoAACaaYyMBhQckwUuTLn7w5EUwe00Z8imX4xs


On-Device ML Is Best For…

Tasks that require minimum latency: next-word prediction, 
portrait mode in the device camera.
How: The model runtime and the app's code are in the same 
process, hence no inter-process communication overhead.

Tasks that ingest sensitive/private data: chat-message 
translation, face recognition in the photos app
How: No data flows outside the app's process, hence no data 
leakage. (BONUS1)



On-Device ML Is Not The Best For…

Tasks that require larger models: image generation, larger 
chat models, ‘circle to searchʼ
Why: Larger models yield better results, at the cost of 
increased memory and CPU usage at inference

Tasks that require a special/complex inference: If the model 
requires special steps that the runtime does not offer, they 
need to be implemented in the app.



Example: Deploying SAM Segment Anything)

Pre-processing:

- Standardize image pixels
- Tokenize text input for the decoder
- Binarize mask input for the decoder
- Normalize point coordinates

Post-processing:

- Resize output mask and apply to 
input image



Model Optimizations

● Quantization: Reduce the computational and memory costs of running 
inference by representing the weights and activations with low-precision 
data types like 8-bit integer (int8) instead of the usual 32-bit floating 
point (float32.

- float32 to int8 implies 4x reduction in size and memory footprint

- int8 operations might be accelerated on certain microprocessors

- theoretically, the model loses on quality as it holds less information 
about the data on which it was trained. Hence, the efficiency vs. 
performance tradeoff needs to be considered.

https://huggingface.co/docs/optimum/en/concept_guides/quantization


Model Optimizations

● Distillation: Training a smaller (student) model on the outputs of a bigger 
(teacher) model.
- Smaller model, lesser parameters, lesser resource footprint

● Model Pruning: Determine ‘insignificantʼ weights from the NN and 
remove them. Reduces size and model latency with minimum impact on 
the quality of the outputs.

https://neptune.ai/blog/knowledge-distillation
https://datature.io/blog/a-comprehensive-guide-to-neural-network-model-pruning


What is a Model Runtime?
A software that ingests a model file (definition 
and weights) along with the user input, performs 
the task, and provides the output.



Types of Model Runtimes

https://android-developers.googleblog.com/2023/12/a-new-foundation-for-ai-on-android.html


Popular Model Runtimes
● LiteRT (prev. TensorFlow Lite) is a 

runtime and model format from Google.
● Supports deployment on Android, iOS, 

web, desktop, and embedded devices 
with GPU/NPU acceleration.

● Ready-to-use wrapper APIs for 
common ML tasks like image/text 
classification, embeddings, and chat 
models.

● llama.cpp is an open-source pure 
C/C runtime for large-language 
models (vision/multimodal models) 
developed initially by Georgi Gerganov.

● Supports inference for most LLM 
architectures and implements 
accelerators with CUDA, Vulkan, Arm 
Kleidi etc.

● Rapidly growing community. Tools like 
LMStudio, Docker Models, ollama 
internally use llama.cpp

https://ai.google.dev/edge/litert


Popular Model Runtimes
● onnxruntime is an open-source runtime 

developed by Microsoft for models 
defined in the ONNX Open Neural 
Network Exchange) format.

● Supports inference on web, mobile, and 
desktop.

● Unique: Supports various model 
optimization schemes and on-device 
training

● ExecuTorch is an open-source runtime 
developed by Meta and is closest to 
PyTorch.

● Supports GPU/NPU acceleration for 
Android, Apple devices, and embedded 
devices.

● Unique: Tight integration with PyTorch, 
a runtime used by most modern ML 
models.

https://onnxruntime.ai
https://executorch.ai


Hardware Improvements

https://www.qualcomm.com/processors/hexagon
https://www.apple.com/in/newsroom/2025/10/apple-unleashes-m5-the-next-big-leap-in-ai-performance-for-apple-silicon/
https://www.arm.com/markets/artificial-intelligence/software/kleidi


How Does C/C++/Rust Code Integrate with Python, Java or Swift 
codebases?

How to integrate with JS for Web Apps?
(BONUS2)



Kotlin/Java - JNI and the Memory API
Write special JNI functions and 
export them as symbols to the 
shared libraries (.so/dylib) files

JVM searches for external or 
native methods and matches 
them with symbols present in the 
shared library.

If a match is found, the Java 
method is bind to the native JNI 
function.

Newer alternative that does not 
require writing ‘specialʼ JNI 
functions: Memory API OpenJDK 
Project Panama)

https://www.baeldung.com/java-foreign-memory-access
https://www.baeldung.com/java-foreign-memory-access


Python - ctypes and Cython
The Python VM can bind shared 
libraries and symbols/objects 
from the shared libraries can be 
accessed via ctypes.

Cython allows writing C 
extensions for Python. The 
routines are written in a .pyx file 
that are compiled by Cython to a 
Python extension module. This 
module, like any other Python 
modules, like be used with an 
import statement.



Swift - clang Modules
The Swift compiler can detect symbols from a C/C header files guided by a clang module map.

This clang module can be used in the Swift code.



BONUS #1  ML Inference on Encrypted Data
● ML models need data to be decrypted before performing 

computations over it, even if the data was encrypted when at 
rest.

● Homomorphic Encryption is a form of encryption that allows 
computations to be performed on encrypted data without first 
having to decrypt it.

https://en.wikipedia.org/wiki/Homomorphic_encryption
https://machinelearning.apple.com/research/homomorphic-encryption


BONUS #2  Using C/C/Rust in Web Apps
● Compile native code to a WebAssembly module and download it 

when the page loads.
● Browserʼs WASM runtime loads the module; JS can now calls 

functions from the module directly.
● Example

https://pjbelo.github.io/mediapipe-js-demos/face_mesh.html


Questions 
or 
Thoughts!


